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SUMMARY

The steady state Navier±Stokes equations are solved in transonic ¯ows using an elliptic formulation. A
segregated solution algorithm is established in which the pressure correction equation is utilized to enforce the
divergence-free mass ¯ux constraint. The momentum equations are solved in terms of the primitive variables,
while the pressure correction ®eld is used to update both the convecting mass ¯ux components and the pressure
itself. The velocity components are deduced from the corrected mass ¯uxes on the basis of an upwind-biased
density, which is a mechanism capable of overcoming the ellipticity of the system of equations, in the transonic
¯ow regime. An incomplete LU decomposition is used for the solution of the transport-type equations and a
globally minimized residual method resolves the pressure correction equation. Turbulence is resolved through
the k±e model. Dealing with turbomachinery applications, results are presented in two-dimensional compressor
and turbine cascades under design and off-design conditions. # 1997 by John Wiley & Sons, Ltd.
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INTRODUCTION

When elliptic solvers are extended to cover compressible ¯ow problems including supersonic zones,

mechanisms overcoming the ellipticity of the scheme needs to be introduced locally. In pressure-

based methods which are of interest herein, all these special treatments must be viewed in relation to

the static pressure itself and its role in ¯ows with Mach number exceeding the `incompressible' ¯ow

limit. In these ¯ow regions, in fact, the pressure undertakes a dual role. It still retains the

responsibility for numerically coupling the pressure and velocity ®elds, which is a key element in

incompressible ¯ows. In addition, the pressure couples with the density through the state equation.

Special treatments can be generally envisaged in the form of selective modi®cations to the standard

central difference scheme used for the discretization of the pressure and velocity (or mass ¯ux)

spatial differences in the momentum and continuity equations respectively. Needless to say, the

convection terms, being always treated through upwind schemes of different levels of accuracy, are

the only terms which are properly treated regardless of the level of Mach number. Aiming at an exact

modelling of the physical way information is propagating, upstream differences seem to be

theoretically needed for all the aforementioned terms. Upwind biasing may apply on different

quantities involved in the calculation procedure (the pressure and=or the density, for instance) and in
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different ways for collocated or staggered grids. Depending on how upwinding is introduced, more or

less smeared discontinuities may appear.

Some important contributions to this problem are listed below. On a staggered grid, Issa and

Lockwood1 extended a pressure-based elliptic solver to high-speed ¯ows by upwinding both the

pressure gradient and the density; the erroneous ellipticity was removed, but uncontrolled arti®cial

dissipation was introduced. Karki and Patankar2 solved the momentum equations in the velocity

components by handling the continuity equation as a ®rst-order upwinded transport equation for the

density. McGuirk and Page3 solved the unsteady form of the equations in the mass ¯ux components

on a staggered grid; shock capturing was achieved by solving the pressure correction equation for the

retarded pressure. Zhou and Davidson4 solved the steady ¯ow equations in the primitive velocity

components on a collocated grid by ®rst-order upwinding the density and density corrections appearing

in the pressure correction equation. The calculated 1D transonic solutions were very dissipative owing

to the low-order upwind of density and density corrections. Demirdzic et al.5 used the SIMPLE algorithm

on a collocated grid to solve the momentum equations in terms of the velocity components,while the mass

¯ux at the cell faces was upwind biased, though partially blended with a central scheme.

On a collocated grid, Lien and Leschziner6 used the time-dependent ¯ow equations and density-

weighted variables, which are expected to undergo smoother variations than the primitive variables

themselves. A third-order pressure-smoothing term is added in the convecting mass ¯ux components at

the midfaces. Extra numerical dissipation is added through the retarded density. The latter is indirectly

introduced in the contravariant velocity components, which are in turn involved inall transport equations.

Compared with the aforementioned works, the present method makes use of a collocated grid

system where all primitive variables are stored in cell-centred storage. In fact, the present method is

an extension of the segregated solution algorithm, previously used for the numerical solution of the

steady incompressible Navier±Stokes equations,7 to the transonic regime. As in the incompressible

¯ow solver, the momentum equations are still solved in terms of the Cartesian velocity components.

The pressure correction is linked to the mass ¯uxes which comprise the convecting ®eld; as such, the

mass ¯uxes are distinguished from the velocity components and stored at the midfaces of the control

volumes. The velocity variables at the cell centres are in turn corrected by combining the pressure

correction ®eld with an upwind-biased density, intentionally violating the ellipticity of the equations

in supersonic regions. For the implementation of the k±e turbulence model, transport-type equations

are solved using the same coef®cient matrix as for the momentum equations, with no additional

inversion cost. The numerical solution of all discretized equations is carried out by means of fast

implicit solvers, appropriately modi®ed to account for the periodicity conditions. The capabilities of

the proposed method are demonstrated in the analysis of a compressor and a turbine cascade under

various ¯ow conditions.

GOVERNING EQUATIONS

Under certain assumptions the steady ¯uid ¯ow can be analyzed without considering the energy

equation and consequently the mass and momentum conservation laws alone specify the problem. In

a Cartesian co-ordinate system (xi; i� 1, 2) these are written in the form8
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where ui (i� 1, 2) are the Cartesian velocity components, R is the ¯uid density, m is the molecular

viscosity and p is the static pressure. Throughout this work a repeated index denotes summation over

all spatial components. The streamtube thickness h is included in (1) and (2) to account for its varying

distribution appearing in one of the examined cases. Owing to the thickness variation in the x1-

direction, additional source terms Si
h appear, namely

S1
h �

dh

dx1

pÿ 2�m� mt�
u1

h

dh

dx1

ÿ 2
3
�m� mt�

@uk

@xk

�
; S2

h � 0:

�
Since the scope of this work is rooted principally in turbulent ¯ow modelling, the eddy viscosity mt

and the turbulent kinetic energy k have already been introduced in (2). According to the high-

Reynolds-number k±e turbulence model, mt is related to k and to the energy dissipation e through the

expression

mt � cmr
k2

e
; cm � 0�09: �3�

For k and e, typical transport equations with non-zero source terms are introduced in the form
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h:

Following the Jones and Launder model,9 the constants appearing in the e equation's source term are

c1� 1�43 and c2� 1�92, while the effective Prandtl numbers have the values sk� 1�0 and se� 1�3.

The production rate of turbulence G is modelled through the formula

G � mt
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When compressibility effects are encountered, the equation of state for an ideal gas is used to

couple the thermodynamic properties in the form

p � RrT ; �5�

where T is the static temperature and R is the gas constant (R� 287�04 m2 sÿ2 Kÿ1). The total

temperature is assumed to remain constant over the whole ®eld and is related to the kinematic

quantities through the expression

Tt � T � 1

2Cp

�uiui � 2k�; �6�

where Cp is the speci®c heat at constant pressure.
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GEOMETRICAL TRANSFORMATION

In order to handle complex geometries, a body-®tted curvilinear co-ordinate system xi, i� 1, 2, is

introduced and all governing equations are transformed accordingly. If J and ~gj are the Jacobian of

the transformation and the contravariant base vectors respectively,

J � @�x1; x2�
@�x1; x2� ; ~g j � Hx j;

the governing equations are cast in the form
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where g jk � ~g j � ~gk stands for the contravariant metric tensor, V j are the contravariant velocity

components. The latter are de®ned as the inner product of the velocity vector and the contravariant

base vector, namely

V j � ~V � ~g j; i � 1; 2:

BOUNDARY CONDITIONS

In order to obtain a well-posed problem, the boundary conditions must comply with the physics of the

¯ow. For compressible ¯uid ¯ows with subsonic inlet the mass ¯ow rate is indirectly de®ned by

means of the inlet ¯ow angle along with the inlet total and the exit static pressure. The total

temperature is also imposed and kept constant in the whole ®eld, which, among other things, assumes

that the solid boundaries are considered adiabatic. The static pressure at the inlet is extrapolated from

the interior of the ®eld. At the exit plane where the static pressure is imposed, the velocity obeys a

zero-gradient law and so do k and e. At the inlet the turbulence quantities are prescribed by means of

the turbulence intensity and a mixing length.

Since the high-Reynolds-number k±e model is coupled with the wall function technique, the

turbulent log-law applies to velocity components at nodes adjacent to solid boundaries. The wall

function technique also provides exact relations for k and e at the same nodes. The static pressure is

calculated through a zero-gradient boundary condition. Along periodic boundaries, periodicity is

imposed.

DISCRETIZATION OF EQUATIONS

According to the cell-centred discretization scheme adopted, the governing equations are integrated

by applying the Gauss theorem over control volumes enclosed by adjacent grid lines. All solution

variables are stored over the centres of the cells and, apart from the Cartesian velocity components,

linear interpolation is used for the calculation of any other ¯ow variable over the cell faces. For the

Cartesian velocity components a pressure-weighted interpolation scheme10 is incorporated which is

capable of alleviating any pressure±velocity decoupling. On the other hand, in supersonic regions the
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density is upwinded in order to account for the modi®ed type of governing equations, but its

discussion is deferred to a later paragraph.

Momentum equations

According to the notation provided in Figure 1, the momentum equations integrated over an

arbitrary control volume yield

Jh�m� mt�g11 @ui
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ÿ JhrV 1ui ÿ Jh

@x1
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" #e
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where Ci consist of both the cross-diffusion terms which include the gij (i 6� j) metrics and the extra

source terms in (8). The cross-diffusion terms are treated explicitly, as the convergence acceleration

resulting from their implicit treatment does not compensate for the extra computing cost. Equations

(10) can be recast in various alternative forms depending on the selection of the solution variables. In

the literature, formulations based on both the Cartesian velocity components and the mass ¯uxes Rui

appear.4±6 From a theoretical point of view the use of the density±velocity product seems

advantageous since it undergoes smoother variations, but this is generally outperformed by the

additional mechanism needed to separate velocities from density. In the present work the momentum

equations are solved in terms of the Cartesian velocity components by assuming the most recent p

and R ®elds. This approach must be distinguished from the aforementioned ones (e.g. Reference 6)

since here the convecting ®eld is expressed by the RVj products. These are ®nally required at the cell

faces and are the outcome of the pressure correction step at the end of the preceding iteration. As will

be shown in equation (14), the convecting ®eld depends only indirectly upon the upwind-biased

density. In contrast with Reference 3, pressure gradients are centrally differenced and thus the use of

dissipative pressure-retarded schemes is avoided.

Figure 1. Two-dimensional control volume and corresponding notation
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An implicit discretization of the left-hand side of (10) gives rise to a ®ve-node stencil. The

coef®cients involved are the same for all momentum equations and depend on the convecting mass

¯uxes, the metrics of the transformation and the discretization scheme. While central differences are

adequate for the diffusion part, a higher-order discretization scheme which employs a three-point

upstream-weighted interpolation technique (QUICK11,12) is used for the convection terms; the latter

splits into a ®rst-order upwind part, being treated implicitly, and the remaining terms which are

lumped into the source terms. For stability reasons, equation (10) is underrelaxed by o (0<o< 1)

and reads

ÿAP

o
uP�

i �
P

K�E;W;F;B
AKuK�

i � Si
M �

1ÿ o
o

APu
P�n�
i

� �
� 0; i � 1; 2; �11�

where AP is the central node coef®cient, Si
M are the source terms and the superscripts over ui denote

the nodes where these are referred to. An asterisk denotes an intermediate velocity ®eld which does

not necessarily satisfy the continuity equation, while (n) denotes the previous iteration level. Finally,

since the ®nite volume coef®cients are common to all momentum equations, their discretized forms

share a common coef®cient matrix [A] and read

�A�fu�i g � fbig; i � 1; 2: �12�

Turbulence equations

Since a coef®cient matrix inversion will be inevitably charged to the momentum equations,

additional inversions can be avoided by smoothing the edges among the turbulence and momentum

equations so as to share the same implicit parts. A comparison of (8) and (9) shows that only different

diffusion coef®cients in the k and e equations appear which involve the ratio of the eddy viscosity to

the effective Prandtl number instead of the effective viscosity itself. A modi®cation is carried out by

adding the diffusion terms

SF � SF � P2
l�1

@

@xl
1ÿ sF
sF

mt ÿ m
� �

Jgll @F

@xl

� �
; F � k; e;

in the source terms of the k and e equations while retaining the ®ve-node stencil previously used.

From an algorithmic point of view the solution of the turbulence equations has to precede the solution

of the continuity equation so as to take advantage of th already assembled coef®cient matrix.

Pressure correction equation

In order to enforce the continuity constraint, the pressure correction method previously established

for incompressible ¯ow calculations7 is extended to compressible ¯ows. The method relies on the

continuity equation integrated over the same control volumes as the momentum equations, namely

�JhrV 1�ew � �JhrV 2�fb � 0: �13�
The development of the pressure correction equation is shown in Reference 7 and only features

concerning its extension to compressible ¯ows will be elaborated here. The discretized momentum

equations, providing a link between velocity and pressure, get shifted from the cell centre P to the

midpoints m (m� e, w, f, b) of the cell faces separating P and the adjacent nodes M

(M�E, W, F, B). Algebraic manipulations with the local metrics provide the contravariant mass
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¯ux components (to be regarded as the convecting mass ¯ux components normal to the cell faces),

which read
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An overbar denotes linear averaging between P and M, while A0 are the central coef®cients involved

in the discretized momentum equations divided by the density:

A0P �
AP

rP

: �15�

With respect to equation (11) the source term Si
M is split into two parts, the ®rst containing the

pressure gradient and the second, ~Si
M , including any other source terms. According to (14), the mass

¯ux at a cell face consists of a linearly interpolated part and a local pressure gradient term which is

centrally differenced over the cell faces to circumvent any pressure±velocity decoupling.

In order not to damage the already satis®ed momentum equations, the contravariant mass ¯ux

corrections are linked to pressure correction differences through
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By substituting (16) and (14) into (13), the pressure correction equation results, which, if only the

orthogonal terms are treated implicitly, reads

ÿBPp0P �
P

K�E;W;F;B
BKp0K � S� � 0; �17�

where S* stands for the divergence of the provisional mass ¯ux R�n�u�i ®eld. By solving (17), the

pressure is readily updated. On the other hand, both the Cartesian velocities at the cell centres (the

solution ®eld) and the contravariant mass ¯ux components at the cell faces (the convecting ®eld) are

corrected through (16). For the former, equation (16) needs to be shifted back to the cell centres,

where it must be decomposed to its constituents, namely the Cartesian velocity and the density. This

is the only phase in the algorithm where the upwind±biased density is used. Following a similar

approach used by Lien and Leschziner,6 the velocity components at the cell centres are corrected

through
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i �0 � ÿ

r
~r

� �
P

J
o
AP

@p0

@xj

@xj

@xl

@xk

@xl

@xi

@xk

 !
P

; i � 1; 2; �18�

where ~R is the retarded density. In contrast with Reference 6, the retarded density is operating only on

the velocity component correction during the pressure correction phase.

Retarded density

For transonic ¯ow problems the retarded density ~R is used to recover the velocity corrections from

the mass ¯ux ones at the cell centres. By reconsidering techniques springing from earlier works on

transonic full potential equations, the upwind effect on the density must conform to the local ¯ow
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direction. For ¯ows not aligned with the co-ordinate system, the upwind biasing is controlled by the

directional Mach numbers

Mi � JV i

a
�����
gii

p
; i � 1; 2;

(no summation over i) where a is the local speed of sound.

Thus the retarded density over any cell centre P is calculated by

~rP � rP � k
P2
i�1

1ÿ 1

�Mi�2
� �

�ri
up;P ÿ rP�; �19�

where ri
up;P, i� 1, 2, is the upstream node of P in the i-direction, the criterion being the sign of Mi.

Ampli®cation or attenuation of the upwind biasing in density is controlled through the parameter k
(k4 1).

It has to be said that the density update, which always precedes the calculation of the retarded

density, is based on updating the static temperature via (6) and the state equation (5).

NUMERICAL SOLVERS

All discretized differential equations share the same form, which, for any scalar variable F, can be

written as

�A��n�fFg�n�1� � fbFg�n�; �20�
where {F} is the vector of the solution variable (i.e. u�i , k, e or p0), [A] is the coef®cient matrix and

{b} summarizes the source terms. Superscript (n) denotes quantities calculated at the current iteration

level.

Convection±diffusion equations

In the segregated algorithm, different solvers can be used for each group of equations. As far as the

transport-type equations are concerned, the solution of (20) is obtained using the modi®ed strongly

implicit procedure (MSIP),13 according to which the coef®cient matrix �A��n� is incompletely factored

into an upper [U] and a lower [L] triangular matrix. This inversion is not costly for two-dimensional

applications and is obtained recursively by requiring that [L] and [U] share the same structure as the

lower and the upper part of [A] respectively. For periodic ¯ows such as those encountered in two-

dimensional cascades, a particular modi®cation in the scheme, analysed in the Appendix, is

introduced. To obtain the dependent variables, four two-step procedures follow, which read

step 1 : �L�fgFg � fbFg;
step 2 : �U �fFg � fgFg; F � u�i ; k; e; i � 1; 2:

�21�

Pressure correction equation

The pressure correction equation is solved using incomplete LU factorization combined with an

overall parameter accelerating the convergence. This parameter b is calculated once per iteration

through7

b � a1

a2
1 � a2

2

;
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where

a1 � �P�ÿ1�B� �P�
ÿ1fS�g
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;

and p0 is updated through

fp0g � b�P�ÿ1fS�g; �22�
where [P] is an approximate inverse of [B] calculated through the LU factorization.

RESULTS AND DISCUSSION

Two-dimensional, controlled diffusion aerofoil compressor cascade

As a ®rst case, the ¯ow in a two-dimensional, controlled diffusion aerofoil cascade, which is

representative of the ®rst rotor hub section of industrial axial compressors, will be analysed with the

present method. The analysis will be carried out under four ¯ow conditions, the design conditions

being one of them. A detailed discussion on this cascade can be found in Reference 14, where the

exact aerofoil geometry is also included. The pitch-to-chord ratio is equal to 0�68 and the stagger

angle is equal to 30�.
The aerofoil's design conditions correspond to an inlet ¯ow angle of 47� at an inlet Mach number

equal to 0�62. In the aforementioned paper the axial velocity±density ratio (AVDR) was given equal

to approximately 1�1. To account for the AVDR effect on the ¯ow, a streamtube thickness variation

of ÿ10 per cent, linearly distributed between the axial co-ordinates corresponding to the leading and

trailing edges, was introduced in the calculations, since no other information was available. The

streamtube thickness was held constant upstream of the leading edge and downstream of the trailing

edge at its corresponding values at the leading and trailing edges respectively. The grid used in the

calculations consists of 1706 51 nodes in the streamwise and pitchwise directions, respectively and

is illustrated in Figure 2.

The four ¯ow conditions to be analysed herein correspond to an incidence variation from ÿ7� up

to 5�. While the inlet ¯ow angle was introduced directly in the calculations, the exit pressure was

calculated by means of the known exit-to-inlet static pressure ratio, the inlet Mach number and the

inlet stagnation pressure, which was held constant at 125,000 Pa at a stagnation temperature of

288 K. The molecular viscosity was kept constant throughout the ¯ow ®eld.

In Table 1 the ¯ow data quantities are summarized on a case-by-case basis. In the same table the

predicted and measured values of the exit-to-inlet static pressure ratio, inlet Mach number, exit ¯ow

angle and cascade losses are tabulated. The latter is de®ned as

o � Pt1 ÿ Pt2

Pt1 ÿ P1

;

where subscripts 1 and 2 denote the inlet and exit respectively.

The same compressor cascade has been analysed previously by an explicit time-marching,

primitive variable Navier±Stokes code.15 In that study, by alternatively using the low-Reynolds-

number k±e and Baldwin±Lomax models, it was concluded that the k±e model provides more accurate

loss predictions but underestimates the ¯ow turning by approximately 1�. On the other hand, the

Baldwin±Lomax model underestimated the level of losses but provided excellent predictions of the

exit ¯ow angles, even though the results were noticeably affected by the transition criterion

incorporated.
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The results predicted by the present method are in very good agreement with measurements, with

the exception of the high-positive-incidence case (a1� 52�) where the turbulence model in use is

proved inadequate. For the design conditions (a1� 47�) and the low-negative-incidence case

(a1� 43�) the predicted losses are in excellent agreement with measurements, while the discrepancy

between predicted and measured exit ¯ow angles is less than 0�5�. In the higher-negative-incidence

case (a1� 40�) the agreement in the exit ¯ow is perfect and the losses are twice as high as those

corresponding to the design conditions; the present method overpredicts the loss level by

approximately 15 per cent. In the same case the peak velocity over the suction side is located at

approximately 45 per cent of the chord. This is also in perfect agreement with measurements, as

Figure 2. Compressor cascade grid

Table I

a1 (�) 40 43 47 52

i (�) ÿ7 ÿ4 0 5
Re (105) 8�61 8�59 8�41 7�63
AVDR 1�0845 1�0909 1�1021 1�1032
M1 (experiment) 0�6229 0�6184 0�6180 0�6214
M1 (prediction) 0�6124 0�6102 0�6125 0�6383

P2=P1 (experiment) 1�0619 1�0948 1�2121 1�1459
P2=P1 (prediction) 1�0530 1�0876 1�1172 1�1618

o (experiment) 0�0466 0�0232 0�0186 0�0417
o (prediction) 0�0542 0�0226 0�0185 0�0226

a2 (experiment) 21�52 20�18 20�20 22�81
a2 (prediction) 21�48 20�56 20�63 22�64
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depicted in Figure 3, where the isentropic Mach number distributions along the pressure and suction

sides of the blade are illustrated for all cases examined. The maximum velocity location is followed

by a severe ¯ow deceleration; no important back-¯ow was captured by the present calculation.

In the high-positive-incidence case, even if the exit ¯ow angle is satisfactorily predicted, the loss

level remains quite low compared with the measured one, though increased compared with the

nominal conditions. The modelling of the velocity pro®les in the near-wall region through the wall

function technique seems to be the main reason for the above discrepancy. An improvement in the

¯ow prediction in this case, without altering the near-wall treatment, was accomplished through the

modi®cation of the turbulence model constants. Two variants have been tested, both based on

increasing the production term in the e equation. In practice this was carried out by shifting the

coef®cient c1 to a higher value (1�57 rather than 1�43) in two ways: (a) only in the separated region as

in Reference 16, using a simplistic criterion for the de®nition of the recirculation zone, and (b) in the

entire ¯ow ®eld. Results in better agreement with experiment have been obtained in case (b), where

the isentropic Mach number distribution along the suction side was affected even upstream of the

onset of separation, and are those presented herein. Apart from discrepancies occurring in the

separated regions, mainly attributed to the inadequacies of the turbulence model, the fact that the loss

level is accurately captured by a full Navier±Stokes code implies that the transition must have

occurred too close to the leading edge.

In Figure 4 the convergence history for the i� 0� case is presented for all equations resolved. One

may observe a very fast, linear, up to machine accuracy, tendency, with the exception of the very ®rst

iterations (approximately 500 iterations) where the arbitrary initial ®eld effects are overcome. From

an engineering point of view, approximately 2000 iterations are suf®cient for a well-converged

solution. The CPU time per node and iteration is about 0�07 ms on a single MIPS 8010 processor.

The convergence history illustrated in Figure 4 was obtained by using underrelaxation factors equal

to 0�6 for the momentum, pressure correction and turbulence equations. In the high-positive-

incidence case the convergence is quite similar; the underestimation of the separated zone alleviates

any dif®culty associated with ¯ow unsteadiness, often caused by massively separated ¯ows.

Two-dimensional, steam turbine cascade

The second case examined is that of an SE1050 cascade designed for the last stage of a SKODA

steam turbine,17 featuring a stagger angle of 37�11�, a chord of 0�1 m and a pitch-to-chord ratio of

0�55117. This case is analysed using air as the working ¯uid, under two ¯ow conditions

corresponding to exit isentropic Mach numbers M2is of 0�906 and 1�189 respectively. In both cases

the inlet ¯ow angle is 19�3�, which corresponds to zero incidence, and the inlet stagnation conditions

were set to 99,000 Pa and 288 K. The H-type grid used in the calculations consists of 1266 41 nodes

and is illustrated in Figure 5.

In Figure 6 the critical Mach number distributions along the pressure and suction sides of the blade

are plotted, which are in good agreement with the measured distributions for both cases. The suction-

side distribution reaches sonic conditions at approximately 45 per cent of the chord. In this part of the

blade the ¯ow accelerates smoothly from the theoretical leading edge and reaches sonic conditions in

exactly the same way in both cases. In the M2is� 1�189 case the supersonic expansion that follows

appears as a decrease and a further increase in the ¯ow velocity, in the part of the ¯ow between 45 per

cent and 80 per cent of the blade chord, over the suction side, mostly related to the curvature of the

suction side at about 50 per cent of the chord. In this case the acceleration is terminated by the shock

wave originating from the neighbouring pro®le. The interaction with the incident shock slows down

the expansion, which tends to show up again close to the trailing edge. Since the last part of the

blade's suction side, following the location of the maximum curvature, is also straight, the trailing
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Figure 3. Isentropic Mach number distribution along blade: (a) i�ÿ7�; (b) i�ÿ4�; (c) i� 0�; (d) i� 5�

7
4

E
.

S
.

P
O

L
IT

IS
A

N
D

K
.

C
.

G
IA

N
N

A
K

O
G

L
O

U

IN
T

.
J.

N
U

M
E

R
.

M
E

T
H

.
F

L
U

ID
S

,
V

O
L

2
5
:

6
3
±
8
0

(1
9
9
7
)

#
1
9
9
7

b
y

Jo
h
n

W
iley

&
S

o
n
s,

L
td

.



Figure 4. Convergence history for all equations in i� 0� compressor cascade case

Figure 5. Turbine cascade grid

PRESSURE-BASED ALGORITHM FOR TURBOMACHINERY FLOWS 75

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 63±80 (1997)



edge effects are local, without dominating over the entire ¯ow ®eld. On the other hand, the ¯ow

acceleration over the pressure side is monotonic as well as identical in the major part in both cases

examined. The two measured and two predicted distributions remain identical in the ®rst 90 per cent

of the blade chord. Only in the last 10 per cent, close to the rounded trailing edge, is the ¯ow in the

M2is� 1�189 case much more accelerated than in the milder case. The predicted very steep

acceleration is in full agreement with the measured one. In Figure 7 the calculated iso-Mach contours

are presented in both cases, aimed at shedding some more light on the aforementioned issues.

Compared with the available interferometric pictures of the ¯ows (these are provided in Reference 17

and will not be repeated here), these ®gures show that the calculations reproduce reasonably well the

major characteristics of the ¯ows. To illustrate the algorithm's merits, the convergence history for all

equations is plotted in Figure 8 for the M2is� 0�906 case; the maximum error is plotted appropriately

normalized on the initial error. One can easily observe the very fast, monotonic trend with a slight

waviness which is a common feature of segregated solution methods. Similar characteristics can be

depicted in the M2is� 1�189 case.

Figure 6. Critical Mach number distribution along blade for turbine case: (a) M2is� 0�906; (b) M2is� 1�189
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CONCLUSIONS

A pressure correction method for the solution of two-dimensional turbulent ¯ow ®elds, previously

utilized for the prediction of laminar and turbulent incompressible ¯ows, has been extended to the

transonic regime. The momentum equations are still solved in the Cartesian velocity components, so

that the main algorithmic part of the method (discretization and numerical solvers) remains the same.

The pressure correction equation enforces the satisfaction of the continuity equation by correcting the

convecting mass ¯ux ®eld at the cell faces and the Cartesian velocities at the cell centres. There, the

retarded density is used to adapt the type of governing equations to the physics of the ¯ow.

The method exhibits fast convergence properties by forming the same coef®cient matrix for all but

the pressure correction equations. The segregated solution of the governing equations, coupled with

appropriate fully implicit solvers, is proved very ef®cient. An appropriate choice of the

underrelaxation factors in all equations results in a monotonic convergence.

The method has proved capable of predicting complex turbomachinery ¯ows in compressors and

turbine cascades under design and off-design conditions. Further improvement in the presented

Figure 7. Iso-Mach contours at turbine cascade passage (increment 0�05): (a) M2is� 0�906; (b) M2is� 1�189
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results under off-design conditions with extensive back-¯ow regions can be obtained by improving

the turbulence model, which is beyond the scope of the present paper.

APPENDIX A: PERIODIC INCOMPLETE LU SCHEME

For problems not involving periodicity or for periodic problems where periodicity is explicitly

handled, a ®ve-node discretization scheme leads to the standard ®ve-diagonal coef®cient matrix [A].

For H-type grids, modi®cations to the matrix structure should be introduced and a seven-diagonal

matrix should be formed if periodicity is to be treated implicitly.

In a cell-centred approach, if I6 J is the grid dimension, (I7 1)6 (J7 1) variables are to be

stored and this is performed using the following numbering convention:

k � �iÿ 1��J ÿ 1� � j; 14 i < I ; 14 j < J : �23�
Under the periodicity-induced modi®cations the seven-diagonal form of [A], corresponding to the

notation of Figure 9, is given schematically in Figure 10, where the broken lines denote extra entries

not appearing when the ®ve-node discretization scheme is applied. In the same ®gure the incomplete

factorization of [A] into an upper and lower triangular matrix13 is shown.

According to the numbering system (23), the periodicity along the lower and upper rows of nodes

(see Figure 11) requires that the corresponding matrix entries D (for the lower part, P1) and F (for the

Figure 8. Convergence history for all equations in M2is� 0�906 turbine case

Figure 9. Stencil notation used in incomplete LU decomposition
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upper part, P2) are handled through the diagonals G and C respectively. These are the only non-zero

entries emerging in these diagonals. Following the Schneider and Zedan13 scheme, the resulting

triangular matrices [L] and [U] have the same structure as the lower and upper triangular parts of [A].

Although C and G are very sparse diagonals, the resulting diagonals c and g are dense owing to the

recursive algorithm implemented in their calculation. Attention must also be paid to the application

of the `modi®ed' SIP, where Taylor expansions between adjacent nodes are implemented. The gain

using the periodic MSIP scheme is estimated at approximately 10 per cent of the computational time.
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